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Abstract. The aim of this paper consists in developing a univariate extreme
value analysis, with applications to the Pakistan Stock Exchange (PSX-100). The
main focus refers to assessing the risk and statistical properties regarding the tails
of the fitted heavy-tails distributions. For this purpose, we implement generalized
extreme value distribution (GEV) and generalized Pareto distribution (GPD) by
following the block maxima approach, peak-over threshold (POT) method and
Poisson processes to several declustered periods. PSX-100 has become the
emerging and best performer financial market in the south-Asian region in
the last decade. Therefore, statistical properties of extreme events of the
stock market have significant importance for investors. We have also
addressed the modelling of Value-at-Risk (VaR) and Expected-Shortfall
(ES) risk measures, in the context of extreme value theory (EVT).

Keywords: Extreme value theory, Tail events, Risk management, Value-at-
Risk, Expected-Shortfall.
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1. Introduction

In traditional financial markets, several factors such as crashes of stock
markets, currency crashes and other extreme events cause immense losses for
investors. In risk management, quantification of the probability of rare and extreme
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events has significant importance. Therefore, the choice of the appropriate
probability distribution of asset returns depends on the stability of the financial
market. In thisregard, the statistical properties of the asset return distribution play
avital role for investors and risk managers. In risk-modelling, empirical fat-tailed
returns distributions are frequently encountered, and properties of the tails of these
distributions have the utmost importance. Hence, based on the above discussion, it
is valuable to investigate the tail behaviors of the asset returns distribution of
emerging financial markets of the developing countries. In this paper, we aim to
study the emerging and best performing south-Asian stock market of Pakistan in
the context of extreme value theory. The PSX-100 share index (formally Karachi
Stock Exchange, KSE) emerged as the integration of three local stock exchanges
under the promulgation of the new Securities Act, 2015. PSX-100 has shown a
significant rise and reached historic levels after the unification. In 2016, PSX-100
was declared an emerging Asian market. Pakistan’s qualification for the Morgan
Stanley Capital International (MSCI) Emerging market index in 2017 resulted in a
record high of 49,876 base points, which is unbroken to this day. Pakistan Stock
Exchange had been named Asia’ s best performer in 2016.

In 2020, a New York based globa markets research firm,
marketcurrentsweal thnet.com (accessed on 27 April 2021), published that PSX has
become the best performer in Asia and the world’s fourth-best performing market.
Pakistan's stock market is an extremely sensitive and highly volatile market. It
reacts quickly to political news, government policies and media developed stories.
On the other hand, rapid growth after unexpected returns is the typical behavior of
the market. The dynamics of price movement in a stock market depends on
different factors, such as monetary policy, the impact of interest rates, and the
promulgation of unfavorable news. Therefore, we choose to investigate the PSX-
100 index and characterize its statistical properties using the Extreme Vaue
Theory (EVT) and information theory. To our best knowledge, very few studies
have been conducted on PSX-100 using EVT. We aim to fill the existing research
gap on the most emerging and best performer market of PSX-100in Asia.

2. Literature Review

Fuller was probably the first who introduced the applications of extreme
value distribution in 1914. Bortkiewicz (1922) developed the modern EVT, and
later, Fisher and Tippett (1928) set down the foundations of the asymptotic theory
of the distributions of extreme values. Hill (1975) studied a general approach to
investigate inferences and properties of the tail of a distribution. For more thorough
details on EVT, the reader is referred to Leadbetter et al. (1983), Beirlant et a.
(2004) and McNeil et a. (2005). Thereafter, severa researchers have provided
various applications of extreme value distributions. See, for example, Malevergne
et al. (2006), Goncu et a. (2012), Sing et a. (2017). The stock return distributions
in emerging and devel oping markets show more leptokurtic behaviour as compared
to developed economies. Therefore, returns distribution and other financial assets,
generally, exhibit fat-tail behaviour. Mandelbrot (1963) introduced a fat-tail
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distribution model of price behaviour in speculative markets. The model replaced
the Gaussian distribution with another family of probability distributions referred
to as stable Paretian. Rama Cont (2001) investigated some facts emerging from the
statistical analysis of price variations in various financial markets. This study
suggests that stylized statistical properties of a financial asset may include heavy
tail. Sheraz and Dedu (2020) studied stochastic models of fat-tail returns and risk-
modelling to investigate the returns distribution of digital currencies. Several
studies exist on application of EVT for stock markets crashes and periods of high
volatility. For example, Gencay and Selcuk (2004) studied few Asian markets in
the context of VaR and EVT. Djakovic et al. (2011) tested the performance of the
EVT on daily returns of four different stock markets. Uppa and Mudakkar (2014)
studied the case of the Pakistani market and employed the VaR measure based on
EVT. Bozovic and Totic (2015) examined the left tail behaviour of the returns on
the several European stock markets and emphasized the importance of the extreme
events. Other approaches, based on information measures were used by Sheraz and
Nasir (2021), Sheraz et al. (2020) and Preda et al. (2016).
This paper is organized as follows. Section 3 discusses the methodology of
modelling the extreme events and related framework. In Section 4, we give a
statistical overview of the data we have used. Section 5 presents our empirical
developments. Section 6 concludes and summarizes our findings.

3. Methodology

In this paper, we aim to analyze the distributional behavior of the PSX-100
daily closing returns for extreme events. We investigate the statistical properties of
the underlying data by implementing the EVT. It provides analogues of the
central limit theorem for the extreme values in a sample.
Suppose (Y;, Y, . .. ,Y,) be a sequence of independent identically distributed
(iid) random variables having common distribution function F. In EVT, we are
interested in modeling the distribution of the maximum of the underlying random
variables. Mathematically:

M, = max(¥;,Y,. ..,¥,) Q)

If we assume that the distribution function Fy (y) is known, then we can write:

PM,<z)=PY;<z,V,<z...,Y,<2)
=PV, <z2)xP(Y, <z)x.. XP(Y, <2z
={Fy(2)}" @)

In practice, the distribution function Fy(z) is unknown, and it can be either
assumed to follow a particular family of distribution, or we can estimate the kernel
density. The distribution function Fy(z) needs to be investigated when (u,, o)
exist, and u,, o, € R, where each g,, > 0. Therefore,

lim,, ., P (“ﬂ‘;“ <z)=F,(2) ®)
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The distribution function Fy,(z) belongs to either the Fréchet, the Gumbel the or
the Weibull family. In literature, there are numerous approaches exist to model the
extreme values statistically. In this method, we focus on extreme events or the
events of large-negative returns. In this regard, the two distributions: (i) GEV and
(ii) GPD, are playing important roles.

The GEV is a continuous probability distribution use to model the tail events. The
cumul ative distribution function of the model is given by:

_ )T
Fluos) (@) = eXp{ (1 +(5) >} £ 0 (4)
exp {—exp (Z_”)} ,E=0

a

where u € R is the location parameter, ¢ > 0 is the scale parameter, and ¢ € R
denotes the shape parameter. The parameter ¢ is also called the tail index. The
values of ¢ classify three different types of extreme vaue distributions. For
£<0,§>0,and & = 0, the GEV converges to the negative Weibull, the Fréchet
and the Gumbel distributions, respectively. These three distributions models
followed the theory based on the Fisher-Tippet-Gnedento theorem (1928). The
theorem states that there are only three types of distributions, the Fréchet, Gumbel
and the Weibull, to model the maximum or minimum of the collection of random
observations from the same distribution. In probability theory, the above-stated
theorem is also called the three-type theorem. It is a general result in extreme value
analysis. The theorem is similar to the central limit theorem for averages with finite
variance. We use the GEV distribution often as an approximation to model the
maxima of the long-finite sequence of random variables.

The generalized Pareto distribution (GPD) is a family of continuous probability
distributions. The distribution has three parameters. u € R is the location
parameter, o > 0 is the scale parameter, and ¢ € R denotes the shape parameter.
Pickands (1975) suggested that for & = 0 , GPD results as a limiting distribution
for the excess over thresholds when the parent distribution belongs to one of the
extreme value distributions. The GPD reduces to the exponential distribution for
u=&=0, and for &€ <0(¢ >0), the GPD has a havier tail (lighter tail),
respectively. Balkema and de Haan (1974) and Pickands (1975) show that for a
large class of underlying distribution functions, the distribution function of the
underlying sequence of iid random variables can be approximated by the GPD. The
distribution function of the GPD is given by:

1—(1+(“ZT‘“’)_?1> E£0

1—exp(—%) ,6=0

Fluee(2) = 5
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wherezzuforfzO,anduSzS%whenf<O.Theparameterye]R{,aisa

scale parameter, and ¢ denotes the shape parameter.

We use three approaches to model the extreme values of PSX-100. We implement
three approaches. block maxima, the peak-over-threshold (POT) and Poisson
processes. To apply the block maxima method, a sufficiently large data set is
usualy required. The unavailability of the large data set consequently estimate the
parameters of the distribution with great uncertainty. As we know, financial time
series, particularly the stock returns, exhibit volatility clustering during unusual
periods. Therefore, it may lead to an invalid selection of the block maxima values.
As aresult, risk measures such as Vaue-at-Risk (VaR) and expected-shortfall (ES)
can be under-estimated.

Alternatively, another preferred approach, the peak-over-threshold (POT), takes
large values of the sample, which exceed a certain threshold. The distribution
function of values of exceedances is obtained by employing the GPD models.
Unfortunately, a definite choice for the threshold level does not exist in the
literature. For example, a low vaue of the threshold level may lead to a biased
estimation. Similarly, a high value produces a fewer number of points for
estimation. Usually, the mean excess function is used to obtain the threshold level,
and the mean residua life plot results with a range of candidate values for the
threshold level.

Financial returns exhibit fat-tail distributions. Therefore, common risk measures
such as standard deviation can be misleading. Another most common risk measure
is Value-at-Risk (VaR). It is used to evaluate the losses concerning market
dynamics. Dedu and Ciumara (2010) used VaR risk measure to derive the
restricted optimal retention in Stop-Loss reinsurance model. Dedu (2015) defined
an extension of VaR, the Limited VaR, which better capture the tail behavior of the
distribution model. The VaR is a quantile of distribution function exceeded with
probability. Let Y be a random variable. The VaR measure of the random variable
Y corresponding to the probability level a isgiven by:

VaR (Y) =infly e R|P(Y < —y) <1 —a} (6)
or
VaR,(Y) = inf{ly e R: F(y) = a}, (7

where a € [0,1], and if R, denotes log-returns of the underlying time series then
VaR, can be expressed as follows:

VaR, = y; + 0,971 () (8)

where q denotes the quantile function of standardized log returns. Generally, a is
taken to be 0.01 or 0.05. For example, if we assume that 1 per cent five-days VaR
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is 1 dollar then, it means over the next five days, there is a 1 per cent chance of
losing at least one dollar. See more detailsin McNeil et a. (2005).

Artzner et a. (1999) proposed an aternative risk measure of financial risk referred
to as the expected shortfall (ES) or tail-VaR. It provides information on the entire
tail of the distribution as a single measure. The ES measure is sub-additive and
allows to compute expected loss when losses exceed VaR. Expected shortfall
estimates the potential size of the loss exceeding. Let Y is a random variable, then
the expected shortfall is given by:

E(Se) = E(Y|Y = VaR(Y)) €)

Wefit GEV and GPD models to PSX-100 monthly largest negative returns. We use
method of maximum likelihood (ML) and Probability-Weighted Moments (PWM)
procedure. For more details on EVT, see Coles (2001).

4. Data
We begin the empirical applications with data analysis of the Pakistan Stock
Exchange (PSX-100). We use logarithmic returns of the PSX-100. The logarithmic
returns of al the underlying data series have been calculated by following

R, =1In xxf , Where R, denotes the daily closing return of the underlying stock. The
t—-1

data used in our empirical analysis consists of January 2001 to January 2021. We
obtained the data from the Thomas Reuters data stream. A preliminary
examination of the descriptive statistics of the log-returns of PSX-100 showed that
the return distributions have high kurtosis, positively skewed and heavier tails than
a normal distribution. The Jarque-Bera statistics, Lilliefors, and Pearson Chi-
Square test are significant at less than 1%. Hence, there is a case for applying fat-
tailed distributions rather than the normal distribution. Figurel indicates that
returns are not independent and identically distributed, and the volatility clustering
phenomenon is present in the data. In Figure 2, the underlying returns have shown
deviation from the normality assumption. Therefore, the rejection of the normally
distributed returns justifies our choice of using the extreme value distributions. We
examine the tail behavior of the PSX-100 returns by applying the EVT. For this
purpose, we are considering the generalized extreme value distribution (GEV),
generalized Pareto distribution (GPD) and mixtures of extreme value distributions.
Figure 2 shows the QQ-plot of the empirical returns of PSX-100 versus the
guantiles of the standard normal distribution. We observe significant deviation
from the normal distribution both on the left and the right tail.
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Figure 1. PSX-100 daily closing return series from Jan-2001 to Jan-2021
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Figure 2. Histogram of PSX-100 daily closing return series with fitted normal
distribution and Gaussian Kernel density estimation (KDE) and QQ Plot from
Jan-2001 to Jan-2021

5. Empirical Analysis

We apply the EVT to PSX-100 data. We implement extreme value models using
block maxima, POT, and point process to model the market risk.

In the first step, the block maxima method is applied to daily losses of PSX-100.
We fit the GEV distribution to this data and present the inferences and diagnostic
tests. For this purpose, we convert the daily returns to positive losses expresses in
percentages. We extracted the monthly maxima of the data series. The data points
extracted are shown in Figure 3. An increased volatility pattern has seen beyond
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the 100th observed loss point. Therefore, the assumption of identically distributed
block maxima might lead to a violation. The parameter estimation results of GEV
distribution followed by the maximum likelihood (ML) procedure are listed in
Table 1.

w -

w -

L ol i [H‘ I

100 150

Block Maxima

Figure 3. Monthly losses of PSX-100 daily returnsfrom Jan 2001 to Jan 2021
We observe that all coefficients are significantly different from zero. The value of
the shape parameter ¢ > 0, giving the heavy-tailed Fréchet case. We have also
used the method of Probability-Weighted Moments (PWM) to estimate the
parameters of GEV. The location parameter u, and the scale parameters g, are
close to the ML estimates. However, the estimate of the shape parameter & =
0.1331 is non-negative and higher than the ML estimate- that is, the GEV is again
of the Fréchet type. We observe in Figure 4 that the probability plot (PP) captured
al the data points. However, the quantile plot (QQ) in the far-right tail has not
followed few data points.

Probability Plot Quantile Plot
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[ a v
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Empirca Mode!

Figure 4. Diagnostic plots of GEV for PSX-100
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Table 1. Fitted GEV to block maxima of PSX-100
GEV U o &
Estimate (ML) 1.8992288 | 0.8670732 | 0.0580542
Standard Error 0.07475629 | 0.05407499 | 0.04568995

Estimate (PWM) | 1.8667601 0.8060077 0.1331637

In the second step, we fit the GPD to daily losses of the PSX-100 by using the POT
method. We use the approach of the mean residual life (MRL) plot to apply the
POT method. A suitable value of the threshold level u can be guided from Figure 6
with 95% confidence intervals for the daily PSX-100 data. We observe that the
graph appears to curve from u = 0.00 to u = 0.04, beyond which it is approximately
linear until approximately u =0.05. Therefore, it seems reasonable to assume a
daily loss as high as 4.5 % as a threshold value, given that a linear relationship
exists between the plotted thresholds and the mean excesses above this value. In
theory, a threshold value dightly less or more than 4.5 might be beneficial.
Consequently, it may provide uncertainty of the parameter estimates.

Mean Excess: e

0005 0010 0.015 0.020

095

(=]

| [ | [ | [ |
0.00 0.01 0.02 003 004 0.05 0.06

Threshold: u

Figure5. Mean Residual Life (MRL) plot for PSX-100 losses
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In the next step, we have fitted the GPD distribution to observed exceedances
values. We assume that the exceedances are iid data points. The estimates of the
fitted distribution and their standard errors have resulted with values of the shape
parameter (standard error) ¢ = —0.0244 (0.0164), respectively. The vaue of ¢
indicates the existence of a heavier tail. The scale parameter sigma is equal to
0.0091 with a standard error of 0.0002, and loglikelihood equals -9833.257.

Now we investigate the goodness of fit of the fitted GPD model. For this purpose,
we have shown the diagnostic plots in Figure 6. We present excess distribution
plot, tail plot, residuals with the fitted ordinary least square line, and the QQ plot.
We observe that the excess-distribution and tails plots both indicate a good fit of
the GPD model to exceeded values. However, the tail plot has deviated from few
data points at the far end. The least-square line of residuals shows the flat pattern,
while the QQ plot has few deviations at the end of the plot.
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Figure 6. Diagnostic plots of the fitted GPD model.
Finally, the estimated values of VaR and ES are given in Table2. We compute
these risk measures at 95%, 99% and 99.5% level.

Table 2. Estimates of Risk M easuresfor PSX-100

Confidence Level VaR ES
95% 0.021889 | 0.032727
99% 0.039499 | 0.049433
99.5% 0.046623 | 0.056191
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In the third step, we use point processes to the daily-continuous losses of the PSX-
100 index. In the POT method, we assumed implicitly that the exceedances are iid
data points. However, this assumption is barely well-founded for financial market
returns, and extremes may tend to cluster in a stationary series. Therefore, the
appropriateness of the models such as GEV and GPD needs to be validated. For
example, in the GPD model, if threshold exceedances occur in the groups, it may
lead to dependence among the observations. Therefore, the loglikelihood equation
of the GPD modd cannot be validated. For more precise mathematical
development, see Leadbetter et a. (1983). We use the declustering approach to
filter out the dependent observations. We recover the data for exceedances above
the 95th percentile and retrieve the losses above the threshold. Therefore, for aniid
Point process, time gaps between the exceedances will Poisson distributed. We
have declustered the Point process data series into several periods, such as weekly,
bi-weekly, monthly, bi-monthly, quarterly, and semi-annually. We recover the
maximum from a cluster of exceedances to represent the extreme losses. We have
fitted the GPD model to these series. We recover the maximum from a cluster of
exceedances to represent the extreme losses. Table 3 shows the results of estimated
parameters, loglikelihood and exceedance values. The standard errors of estimates
are given in round brackets. The estimated values of the shape parameter behave
differently for different declustered frequency periods.

Table 3 Parameter estimates of declustered GPD fitted model.

Decluster Fregquency 13 o Loglikelihood | Exceedances
ety o oy | | @
R - e R
A P B R
Bi-Monthly ?OOf%S (10323552) 62.99661 47
s ik | wwes @
R

We can observe the departure from the iid assumption of observed losses
employing severa plots. Figure 7 shows diagnostic graphs of ACF. We have
noticed exceedances do not occur randomly. The QQ plot depicts that the
exceedances are clustered. Therefore, deviation from iid assumption has captured
clearly. Figure 8 and Figure 9 shows QQ plots, excess distribution, and tail of the
distribution plots of declustered periods of weekly, bi-weekly, monthly, bi-
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monthly, quarterly and semi-annually from top left to the right bottom,
respectively. Table 4 shows the goodness of fit (GoF) results for both the GEV and
GPD models. The small p-values of the GPD suggest accepting it as the best-fitted
model.

GoF Test GEV Distribution GPD Distribution

Statistics | P-Vaue | Statistics | P-Value
Cramer-von Misses | 0.067 | 0.30617 | 0.2272 | 0.00246
Anderson-Darling | 0.4649 | 0.25414 | 1.3749 | 0.00147

Weekly De-clustered Loss Bi-Weekly Declustered Loss Monthly De-clusterad Loss
o e g
- =7 -
= = | =
§ 2 § o] § 51
o T o Ty ety e
o 1|; i R s s THrirr 110 e i L 1l
= & T o
""""""""""""""" T A o B e i S B e e I pa
L] 10 1 20 o s 10 1 ] 0 1 1
Lags Lags Lags
(a) 1) =
Bi-Monthly De.clustered Loss Quaterly De-clustered Loss Semi-annually De-clustered Loss
e - e
- =] e
@ °J w
e Hi- b § S " | N P
B o T o
e l L I L L 11 2 A T
- T T a7 T T T 7
e . max @ =epussspasas TETEPLEreY EPErT P
e 10 1 o 5 10 1% ¢ 2 4 & 8 10 12
Lags Lags Lags
id) (&)

Figure 7. Diagnostic ACF plots of the fitted GPD model for declustered
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Figure 8. QQ plots of GPD fitted model for declustered observations.
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Figure9. Plotsof excessdistribution and tail of the GPD fitted model for
declustered observations.

6. Conclusions

The Pakistani stock market (PSX-100) exhibit a high degree of volatility and, it is
sensitive to reacts quickly to political news, government policies and media
developed stories. Consequently, the risky nature of the market provides the basis
to implement the EVT. The main aim of the present study was to evaluate different
statistical methods used for the analysis of extreme events of stock returns. For this
purpose, daily closing returns of PSX-100 for twenty years data have been
analyzed. The data was organized into new data sets, and we characterized the risk
properties of the financial market. The GEV distribution fits as a Fréchet type to
the block maxima data set. We estimated the parameters of the employed model by
using the methods of MLE and PWM. In the second step, we used the POT method
to fit the GPD model. However, the estimated parameters values and the diagnostic
plots and goodness of fit methods show that the GPD model performed better. We
have also applied the GPD model to declustered periods by using the point
processes method. We investigate that the sensitivity of the model's parameters is
high, and it depends on the number of declustered periods. The estimated values by
this method become unauthentic if the number of observations in a declustered
period is less. We examine that the returns distribution of PSX-100 is fatter than
the normal distribution. Therefore, GEV and GPD models perform well in
modelling extreme events, and risk measures such as VaR and ES in this regard
can be used effectively. Finaly, this empirical study characterized the emerging
south-Asian stock market, PSX-100, to model the extreme events.
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